Spring-applied brake

INTORQ BFK461

4 - 235 Nm

setting the standard

BFK461, sealed design

The INTORQ range of spring-applied brakes is being expanded with the addition of the new BFK461 series of sealed designs. This brake has been specifically developed for application areas with high enclosure requirements. It is a self-contained system available in seven sizes and with braking torques of 4 - 235 Nm is ideal for use in wind power plants, cranes and textile machines.

Features

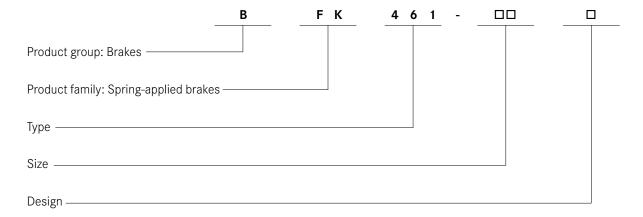
- Spring-applied brake, sealed design, IP65 enclosure
- Designs with and without flange
- Long maintenance intervals

Example applications

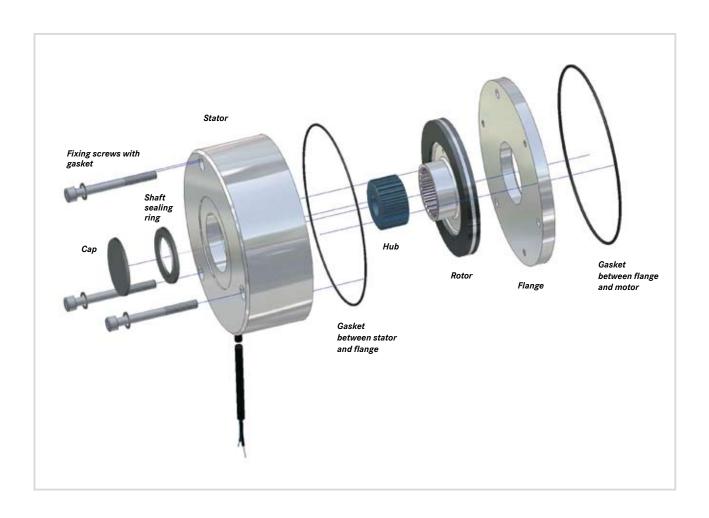
- Brake motors
- Wind power plants
- Car wash systems
- Cranes
- Hoists
- Textile machines

INTORQ

Contents


Product key	4
Product information	5
Principle of operation	6
Technical data	
Dimensions	7
Rated data	8
Braking torques	8
Operating times	9
Explanations	9
Service life and wear	10
Available variants	11
Sales and service	
around the world	12

Product key INTORQ BFK461-□□□


Sizes

06, 08, 10, 12, 14, 16, 18

Not coded: Supply voltage, hub bore, options

Stator design

N – Non-adjustable in the sealed design

Product information

INTORQ

INTORQ BFK461 spring-applied brake

A powerful and complete range

- 7 sizes
- Standard voltages 24V, 103 V, 180-V, 205 V
- Torque range 4 235 Nm

Versatile

- Modular structure for virtually all applications
- Dimensions identical to the BFK458 range

Torque transmission

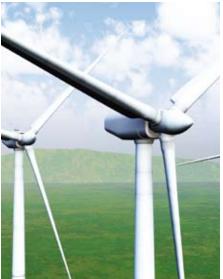
■ Designed for dry running

Ready for operation immediately

- Preset air gap, quick and easy mounting
- Special machining of the friction surfaces ensures that the characteristic torques are achieved after very few switching operations.
- No fixed bearing is required on the brake

Durable

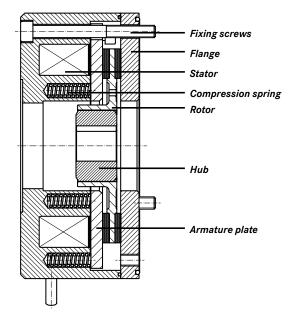
- The insulation system to temperature class F (155°C) ensures that the winding has a long service life
- These brakes are designed for 100% operating time (current applied to the brake)


Low maintenance

- Long rotor/hub connection with low rate of wear and a tried-and-tested involute gear
- Asbestos-free fiction linings with low rate of wear

Reliable

- The certified ISO-9001 and ISO 14001 quality system provides the basis for consistently high-quality products
- Manufacture and testing to VDE 0580



Principle of operation

BFK461 spring-applied brake

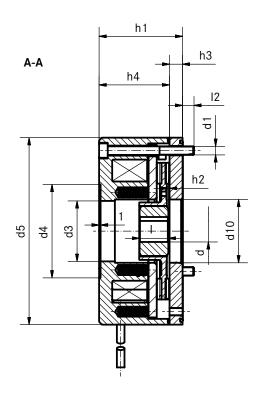
Brake module rotor + hub + flange

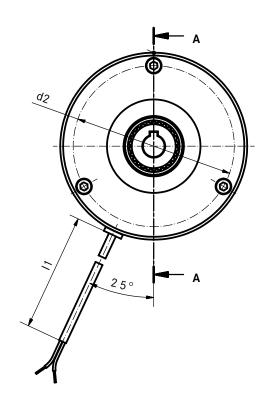
INTORQ BFK461 spring-applied brakes are single-disc brakes with two friction surfaces. When de-energised, several compression springs are used to generate the braking torque through friction locking. The brake is released electromagnetically. During braking, the compression springs use the armature plate to press the rotor (which can be shifted axially on the hub) against the counter friction face.

When the brakes are applied, an air gap s_{air} is present between the armature plate and the stator. The stator's coil is energised with DC voltage in order to release the brake.

The resulting magnetic force works against the spring force to pull the armature plate towards the stator. This relieves the spring force on the rotor which can then rotate freely.

General information


INTORQ brakes are designed so that the stated rated torques are reliably attained after a short run-in operation.


Given the fluctuating properties of the organic friction linings used and changing environmental conditions, there may however be deviations from the stated braking torques. Appropriate safety factors in the design must take this into account. An increased breakaway torque may in particular be experienced in damp conditions and with changing temperatures after long downtimes.

The braking torque should be checked when using the brake on the customer's friction surfaces. If the brake is being used solely as a holding brake without any dynamic load, the friction lining must be reactivated regularly.

Technical data Intore

BFK461, sealed design with rotor and flange

Size	M _k default	M _k max.	P ₂₀	dH7 max.	d ₁	d ₂	d ₃ H7	d ₄	d ₅	d ₁₀	h ₁	h ₂	h ₃	h ₄	I	l ₁	l ₂	Sair
06	4	6	20	15	3-x-M4	72	24	45	87	31	42	1	6	36	18	400	7	0.2
08	8	12	25	20	3-x-M5	90	32	55	103	41.5	50	1.5	7	43	20	400	9	0.2
10	16	23	30	20	3-x-M6	112	42	65	130	44	58	2	9	49	20	400	12	0.2
12	32	46	40	25	3-x-M6	132	52	75	148	52.5	63.5	2	9	54.5	25	400	11.5	0.2
14	60	80	50	30	3-x-M8	145	52	100	165	55	76	2	11	65	30	400	12	0.3
16	80	125	55	38-1)	3-x-M8	170	52	100	200	70	83	2.25	11	72	30	600	15	0.3
18	150	235	85	45	6-x-M8	196	62	115	221	77	94	2.75	11	83	35	600	14	0.4

[■] M_K : Rated torque of the brake in Nm at n = 100 rpm

[■] P₂₀: Coil power at 20 °C in W

^{■ &}lt;sup>1)</sup> Standard keyway to DIN 6885/1-P9

[■] All dimensions in mm

Technical data

Rated data

Size	p ¹⁾ [20°C]	sairmax service brake	sairmax holding brake	Jplastic rotor	Jalu rotor	Mass of stator	
	[W]	[mm]	[mm]	[kgcm ²]	[kgcm ²]	Assembly [kg]	
06	20	0.5	0.3	0.11	0.15	0.75	
08	25	0.5	0.3	0.34	0.61	1.2	
10	30	0.5	0.3	=	2.0	2.1	
12	40	0.5	0.3	-	4.5	3.5	
14	50	0.75	0.45	=	6.3	5.2	
16	55	0.75	0.45	-	15	7.9	
18	85	1.0	0.6	-	29	12	

¹⁾ Coil power at 20°C in W, possible deviation up to +10%, depending on supply voltage selected

Braking torques, depending on speed and permissible limit speeds

Size	Average braking torque when decelerating	Braking torque at Δn ₀	Max. speed Δn _{0max}			
	from Δn_0 to a standstill	1,500	3,000	max.	···umax	
	[%]	[%]	[%]	[%]	[rpm]	
06	100	87	80	74	6000	
08	100	85	78	73	5000	
10	100	83	76	73	4000	
12	100	81	74	73	3600	
14	100	80	73	72	3600	
16	100	79	72	70	3600	
18	100	77	70	68	3600	

[■] As speed increases, so does wear

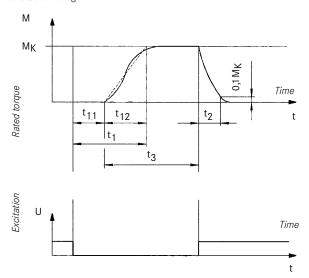
Rotor with plastic sleeve

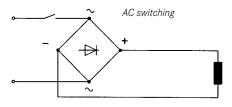
The rotor with plastic sleeve offers numerous advantages and reduces rattling noise in the rotor/hub connection. The tried-and-tested involute gear, which has been proving its worth for many years, safeguards the stability of the rotor/hub connection. The plastic sleeve reduces backlash, thereby increasing the service life of the brake.

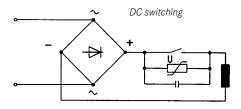
Features and advantages

- Low-backlash power transmission between shaft and rotor
- Long service life thanks to involute gear and long rotor neck
- Low wear between rotor and hub thanks to low backlash
- Recommended for frequency inverter operation
- Noise-reduced design

Technical data


INTORQ


Operating times


The listed operating times are guide values which apply to DC switching with rated air gap s_{air} , warm coil and standard characteristic torque. The times shown are mean values. The

engagement time $t_{\scriptscriptstyle 1}$ is approximately 8 to 10 times longer for AC switching.

Torque time characteristic, dependent on excitation voltage

Explanations

t ₁ t ₂	[s] [s]	Engagement time, $t_1 = t_{11} + t_{12}$ Disengagement time (time from the beginning of the torque drop until 0.1 M	t ₁₂ Q _{perm}	[s]	Rise time of braking torque Max. permissible friction energy per switching cycle
t ₃	[s]	is $reached_K$) Slipping time (time during which a $relative$	S _h	[h ⁻¹]	Operating frequency, i.e. the number of periodical brake operations
		movement occurs between drive and output with brake applied)	Sair		Rated air gap
t ₁₁	[8]	Delay time (time from disconnecting the voltage until the torque begins to rise)			

Size	Braking torque rated value at Δn=100 rpm M _K	Maximum permissible switching energy with single operating Q _E	Transition operating frequency frequency Sair	Operating times [ms] ¹⁾ at S _{airr} Engagement on DC side			Disengagement
	[Nm]	[J]	[h ⁻¹]	[t ₁₁]	[t ₁₂]	[t ₁]	[t ₂]
06	4	3000	79	14	30	44	62
80	8	7500	50	39	27	66	61
10	16	12000	40	29	41	70	100
12	32	24000	30	40	38	78	150
14	60	30000	28	36	50	86	300
16	80	36000	27	30	45	75	330
18	150	60000	20	68	67	135	320

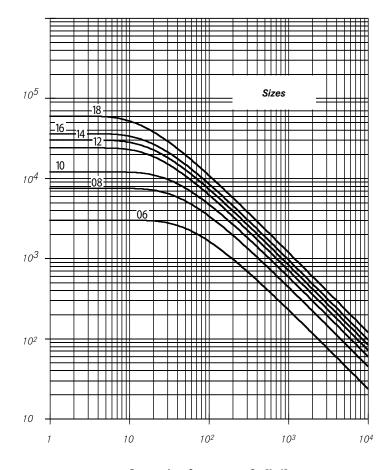
 $[\]blacksquare$ $^{1)}$ Operating times valid for 205 V DC coils

Technical data

Service life and wear

The friction energy to be withstood until s_{airmax} is reached is dependent on a number of factors: in particular, the inertias to be braked, the braking speed, the operating frequency and the resulting temperature on the friction surfaces. For this reason, no universal value for all operating conditions can be given in respect of the amount of friction energy that can be handled.

In addition, increased wear should be expected with vertical mounting.


When the maximum permissible working air gap (s_{airmax}) is reached, the rotor must be replaced.

Where the amount of friction energy per switching operation is low, the brake's mechanical components can impose limitations in terms of service life. In particular, the rotor/hub connection, springs, armature plate and sleeves are subject to operational wear. The expected service life of the standard design is around 1 million load alternations. Solutions that are optimised in terms of service life are available in cases where a longer service life is required (consult the manufacturer).

Maintenance

Brakes are components which are subject to a great deal of wear. When installing the brake, it must be ensured that it can be easily accessed for inspection and maintenance purposes. Intervals between inspections should be set in accordance with the expected service life and load. For more information, please see the Operating Instructions.

Permissible friction energy Q_{perm} depending on operating frequency S_h

Operating frequency S_h [h-1]

Switching energy Q [J]

Model overview

INTORQ

INTORQ BFK461-□□□ Complete stator

Design • With flange

■ Without flange

Brake voltage ■ 24 V ■ 103 V ■ 180 V ■ 205 V

Cable length Standard

(from 100 mm to 1000 mm in 100 mm steps, from 1000 mm to 2500 mm in 250 mm steps)

Accessories

Rotor Standard Noise-reduced (rotor with sleeve)

Hub (for bore diameter, see Dimensions)

Fixing For mounting onto the flange screw set For mounting on the motor

Sealing of theShaft sealing ring (shaft diameter on request)

back wall of the housing ■ Cap

Electrical accessories

Bridge rectifier 4-pole without snap-in stud

■ 4-pole with snap-in stud

6-pole vertical, integrated spark suppressor6-pole horizontal, integrated spark suppressor

Half-wave rectifier 4-pole without snap-in stud

■ 4-pole with snap-in stud

6-pole vertical, integrated spark suppressor6-pole horizontal, integrated spark suppressor

Spark suppressor

INTORQ – Sales and Service around the world

INTORQ customers can reach us at any time and from anywhere in the world. Our Key Account Sales Team looks after key account customers and project business.

In addition, we co-operate with Lenze's global sales organisation. You can contact us via Lenze Service by calling the 24-hour helpline (008000 24 46177).

INTORQ GmbH & Co. KG

PO Box 1103 D-31849 Aerzen, Germany

Wülmser Weg 5 D-31855 Aerzen

Tel.: +49 (0)5154 70534-0 Fax: +49 (0)5154 70534-200

E-mail: info@intorq.de

www.intorq.de

INTORQ

setting the standard